Mechanical Engineering

Professor Katia Bertoldi, Director of Undergraduate Studies
Dr. Chris Lombardo, Associate Director of Undergraduate Studies
Mechanical engineering is a discipline of engineering that uses the principles of physics and materials science for the analysis and design of mechanical and thermal systems. Mechanical engineering is critical to the success of many human enterprises - it plays a central role in the generation and distribution of energy, transportation, manufacturing, and infrastructure development. Nearly every product or service in modern life has been touched in some way by a mechanical engineer. 
The concentration in Mechanical Engineering is structured for a diversity of educational and professional objectives. For students who are planning to work as practicing engineers or who may be preparing for careers in business, education, government, or law—and for those whose career objectives may be less specific—the concentration provides an ideal framework for a well-rounded technical and scientific education. 
The technologies that engineers create are changing at an amazing rate, but the fundamental tools of engineering change more slowly. The Harvard Mechanical Engineering curriculum emphasizes a solid background in the applied sciences and mathematical analysis and provides ample opportunity to learn about state-of-the-art technologies. Students also gain experience in the engineering design process, the unique engineering activity that requires creative synthesis as well as analysis to fulfill specified needs. 
The objectives of the Mechanical Engineering program are to provide students a solid foundation in mechanical engineering within the setting of a liberal arts college for preparation for a diverse range of careers in industry and government or for advanced work in engineering, business, law, or medicine. It enables the acquisition of a broad range of skills and attitudes drawn from the humanities, social sciences, and sciences in addition to engineering, which enhances engineering knowledge and contributes to future leadership and technical success. 
The SB degree program requires a minimum of twenty courses (80 credits). The curriculum is structured with advanced courses building on the knowledge acquired in math, science, and introductory engineering science courses. Concentrators are encouraged to complete the common prerequisite course sequence in their first two years at Harvard. This includes Math (through 1a and 1b; plus, 21a and 21b, 22a and 22b, 23a and 23b, or Applied Mathematics 21a and 21b, or 22a and 22b), Physics (through Physical Sciences 12a and 12b, Physics 15a and 15b, or Applied Physics 50a and 50b), and Computer Science 50. Students are cautioned that it is more important to derive a solid understanding of these basic subjects than to complete them quickly without thorough knowledge; this material is extensively used in many subsequent courses. If in doubt, it may be wise to enroll in the Math 1 sequence rather than proceed to Math 21a or 23a with marginal preparation. 
The SB programs in Mechanical Engineering and Engineering Sciences share many course requirements, and there is some flexibility in moving between these programs. To get an early sample of engineering coursework, entering students are invited to enroll in Environmental Science and Engineering 6 (Environmental Science and Engineering), Engineering Sciences 50 (Electrical Engineering), Engineering Sciences 51 (Mechanical Engineering), and Engineering Sciences 53 (Biomedical Engineering). These introductory courses have minimal prerequisites and have been very popular with prospective engineering concentrators. Engineering Sciences 50 and 51 have extensive hands-on laboratory sections. 
Upon graduation, students in the Mechanical Engineering concentration should demonstrate the following student outcomes: 
  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics 
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors 
  • An ability to communicate effectively with a range of audiences 
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts 
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environmental, establish goals, plan tasks, and meet objectives 
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgement to draw conclusions 
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies 
Students select a track in: 
  • Mechanical Systems 
  • Thermal Systems 
20 courses (80 credits) 
  1. Required courses for all Tracks: 
    1. Mathematics/Probability and Statistics/Applied Mathematics (four courses): 
      1. Mathematics 1a and b; and Applied Mathematics 21a and 21b, Applied Mathematics 22a and 22b, Mathematics 21a and 21b, Mathematics 22a and 22b, or Mathematics 23a and 23b. (Note: Students who start in Mathematics 1a will not be required to satisfy either the probability and statistics requirement or the applied math requirement. Students who start in Mathematics 1b must take a course that satisfies the probability and statistics requirement. Students who start in Mathematics 21a, 22a, 23a, or Applied Mathematics 21a or 22a must complete the courses in both probability and statistics and applied math.) 
      2. Probability and Statistics (one course): At least one of Applied Mathematics 101, Engineering Sciences 150, or Statistics 110 (if starting in Mathematics 1b, 21a, 22a or 23a, or Applied Mathematics 21a or 22a). 
      3. Applied Mathematics (one course): At least one of Applied Mathematics 104, 105, 106, 107, 108 (formerly Applied Mathematics 147), or 120 (if starting in Mathematics 21a, 22a, or 23a or Applied Mathematics 21a or 22a). 
    2. Physics (two courses): Applied Physics 50a, Physical Sciences 12a, or Physics 15a or 16; and Applied Physics 50b, Physical Sciences 12b, or Physics 15b. Appropriate advanced-level physics courses may also fulfill this requirement (please consult with SEAS advisers). 
    3. Chemistry/Advanced Science (two courses): Life Sciences 1a or Life and Physical Sciences A, Physical Sciences 1 or 11, or Physical Sciences 10. Advanced science courses by permission. 
    4. Computer Science (one course): Computer Science 50, 51, or 61. 
    5. Electronics (one course): Engineering Sciences 54, 153, or both of Engineering Sciences 152 and Computer Science 141. (If both ES 152 and CS 141 are taken, the second course can count as the engineering elective, see h below.) 
    6. Engineering Design (two courses): Engineering Sciences 96 or 227, and Engineering Sciences 100hf (see item 3 below). Engineering Sciences 96 or 227 must be taken in junior year, prior to ES 100hf. 
    7. Engineering Elective (one course)
      1. Engineering Sciences 50, 53, 111, 115, 121, 128, 151, 152, 156, 162, 173, 175, 177 
      2. Note: By prior petition and approval, advanced-level engineering science courses relevant to mechanics and materials engineering and advanced-level MIT courses in mechanical or materials engineering. Petitions will only be considered for courses that possess engineering content at a level similar to other technical engineering courses at SEAS. 
      3. Computer Science 51, 61, 141 
      4. Applied Physics 195 
      5. Note: Students entering Harvard with secondary school preparation that places them beyond the level of any of the required courses listed above may substitute appropriate advanced-level courses. However, ABET accreditation requires that all students complete at least 8 courses in math and science and 12 courses in engineering topics. Students who start in Math Ma will need to take 21 courses in order to fulfill the degree requirements. Given the number and complexity of the requirements, students interested in pursuing Mechanical Engineering should consult with the Associate Director of Undergraduate Studies or Director of Undergraduate Studies about their plans of study as early as possible. 
  2. Track Requirements: 
    1. Mechanical Systems Track 
      1. Required Core (four courses):  
        1. Engineering Sciences 51, 120, and 125 
        2. Engineering Sciences 123 or 181 (other can be taken as track elective) 
      2. Track electives (three courses): 
        1. Select at least one course on thermal systems: Engineering Sciences 181, 183  
        2. Select from the following to reach a total of three track electives: Engineering Sciences 123, 128, 159, 192 
    2. Thermal Systems Track 
      1. Required Core (four courses): 
        1. Engineering Sciences 181 and 183 
        2. Engineering Sciences 120 or 123 (other can be track elective) 
        3. Engineering Sciences 51 or 125 (other can be track elective) 
      2. Track electives (three courses): 
        1. Select three from: Engineering Sciences 51, 120, 123, 125, 173, 190, 192 
  3. Sophomore Forum: Sophomore year. Non-credit. Spring term. 
  4. Tutorial: Required. Engineering Sciences 100hf. 
  5. Thesis: Required: An individual engineering design project is an essential element of every SB program and is undertaken during the senior year as part of Engineering Sciences 100hf. Faculty supervised reading and research is an important aspect of this requirement. 
  6. General Examination: None. 
  7. Other Information: 
    1. Advising Note: Students who score below a letter grade of B in their math courses, particularly in the 1a,b and 21a,b series, are strongly encouraged to speak with the Mechanical Engineering Director or Associate Director of Undergraduate Studies to discuss their math preparation for Mechanical Engineering. 
    2. Engineering Sciences 50 and 53 and Environmental Science and Engineering 6 can only count as an engineering elective when taken during the freshman or sophomore years. 
    3. Only one of ES 91r (4 credits) or ES 91hfr (4 credits) can count as an approved elective in the degree requirements 
    4. Pass/Fail and Sat/Unsat: None of the courses used to satisfy the concentration requirements may be taken Pass/Fail or Sat/Unsat. 
    5. Plan of Study: Concentrators are required to file an approved departmental Plan of Study during their third term (i.e., the first term of their sophomore year) and to keep their plan up to date in subsequent years. All SB programs must meet the overall ABET program guidelines, a minimum of four courses in basic sciences, four courses in mathematics and twelve courses in engineering topics. Plan of Study forms may be obtained from the School of Engineering and Applied Sciences’ Office of Academic Programs, Pierce Hall 110, and from the SEAS website
    6. Additional Terms: Concentrators who wish to remain beyond the end of the second term of their senior year to complete the SB requirements must be approved to do so by the Undergraduate Engineering Committee. A written petition is required and should always be submitted as early as possible and under discussion with the Associate Director of Undergraduate Studies or Director of Undergraduate Studies. Petitions can be submitted no later than January 15 between the student’s fifth and sixth terms (i.e., middle of junior year), or August 15 between the student’s fifth and sixth terms if the student’s fifth term is the spring. Under no circumstances will the Committee grant a student permission for more than two additional terms. Petitions are only granted in exceptional cases, and only to meet specific SB degree requirements. More information can be found on the SEAS website
    7. Joint Concentrations: Mechanical Engineering does not participate in joint concentrations. 
    8. Any exceptions to these policies must be approved via written petition. 
Students interested in concentrating in Mechanical Engineering should discuss their plans with the Director of Undergraduate Studies, the Associate Director of Undergraduate Studies, or the Undergraduate Academic Programs Manager. Each undergraduate who elects to concentrate in Mechanical Engineering is assigned a faculty adviser depending on his or her area of specialization. The faculty adviser might also be a member of the Undergraduate Engineering Committee, whose members have the responsibility for reviewing departmental Plans of Study. If students do not request a change in adviser, they have the same adviser until they graduate. Each student is reassigned to another faculty member while his or her original faculty adviser is on leave. It is expected that students will discuss their Plans of Study and progress with their Director of Undergraduate Studies or Associate Director of Undergraduate Studies at the beginning of each term. Students may seek advice from their faculty adviser, the Director of Undergraduate Studies, the Associate Director of Undergraduate Studies, or the Academic Programs Manager at any time. 
Further information is available from the Director of Undergraduate Studies, Professor Katia Bertoldi,, 617-496-3084; or the Associate Director of Undergraduate Studies, Dr. Christopher Lombardo,, (617) 496-5185; or the Undergraduate Academic Programs Manager, Kathy Lovell,, (617) 496-1524. 
Number of Concentrators as of December
Mechanical Engineering
Mechanical Engineering + another field
Another field + Mechanical Engineering
*Mechanical Engineering was a new concentration for 2012-13.